Pipelines

Derivatives are generated within FrameTree by modular "pipelines". Pipeline outputs are connected to sink columns (see Columns). Pipeline inputs can draw data from either source columns or sink columns containing derivatives generated by prerequisite pipelines. By connecting pipeline inputs to the outputs of other pipelines, complex processing chains/webs can be created (reminiscent of a makefile), in which intermediate products will be stored in the dataset for subsequent analysis.

FrameTree uses the Pydra dataflow engine under the hood, and Pydra tasks or workflows can be "applied" to a dataset, where they will be wrapped by a pipeline. However, shell commands can be wrapped using the generic frametree.common.shell`() task. Pipelines can be applied to the dataset when it is created, and then run incrementally as the data is acquired, ensuring the same parameters are used consistently. Additional management features that FrameTree pipelines provide are

  • iteration logic over the dataset

  • storage and retrieval of data to and from the data store

  • conversion between between mismatching file formats

  • provenance

  • consistent parameterisations and software versions

To connect a workflow via the CLI mapping the inputs and outputs of the Pydra workflow/task (in_file, peel and out_file in the example below) to appropriate columns in the dataset (T1w, T2w and freesurfer/recon-all respectively)

$ frametree add-source 'myuni-xnat//myproject@training' T1w \
  medimage/dicom-series --regex '.*mprage.*'

$ frametree add-source 'myuni-xnat//myproject@training' T2w \
  medimage/dicom-series --regex '.*t2spc.*'

$ frametree add-sink 'myuni-xnat//myproject@training' freesurfer/recon-all \
  application/zip

$ frametree apply 'myuni-xnat//myproject@training' freesurfer \
  pydra.tasks.freesurfer:Freesurfer \
  --input T1w in_file medimage/niftiGz \
  --input T2w peel medimage/niftiGz \
  --output freesurfer/recon-all out_file generic/directory \
  --parameter param1 10 \
  --parameter param2 20

If there is a mismatch in the data datatype (see FileFormats) between the workflow inputs/outputs and the columns they are connected to, a datatype conversion task will be inserted into the pipeline if converter method between the two formats exists (see FileFormats).

Alternatively via the Python API:

Click to show
from pydra.tasks.freesurfer import Freesurfer
from frametree.core import FrameSet
from fileformats import generic, medimage

frameset = FrameSet.load('myuni-xnat//myproject:training')

frameset.add_source('T1w', datatype=medimage.Dicom, path='.*mprage.*',
                  is_regex=True)
frameset.add_source('T2w', datatype=medimage.Dicom, path='.*t2spc.*',
                  is_regex=True)

frameset.add_sink('freesurfer/recon-all', common.Directory)

frameset.apply(
    workflow=Freesurfer(
        name='freesurfer,
        param1=10.0,
        param2=20.0),
    inputs=[('T1w', 'in_file', medimage.NiftiGz),
            ('T2w', 'peel', medimage.NiftiGz)],
    outputs=[('freesurfer/recon-all', 'out_file', generic.Directory)])

frameset.save()

If the source can be referenced by its path alone and the formats of the source and sink columns match those expected and produced by the workflow, then you can all add the sources and sinks in one step

$ frametree apply pipeline '/data/enigma/alzheimers@test' segmentation \
  pydra.tasks.fsl.preprocess.fast:FAST \
  --source T1w in_file medimage/nifti-gz \
  --sink fast/gm gm medimage/nifti-gz \
  --parameter method a-method

By default, pipelines will iterate all "leaf rows" of the data tree (e.g. session for datasets in the Clinical space). However, pipelines can be run at any row row_frequency of the dataset (see Axes), e.g. per subject, per visit, or on the dataset as a whole (to create single templates/statistics).

Pipeline outputs must be connected to sinks of the same row row_frequency. However, inputs can be drawn from columns of any row row_frequency. In this case, inputs from more frequent rows will be provided to the pipeline as a list sorted by their ID.

For example, when the pipeline in the following code-block runs, it will receive a list of T1w filenames, run one workflow row, and then sink a single template back to the dataset.

$ # Add sink column with "constant" row frequency
$ frametree add-sink bids///data/openneuro/ds00014 vbm_template medimage/nifti-gz \
  --row-frequency constant

$ # NB: we don't need to add the T1w source as it is auto-detected when using BIDS

$ # Connect pipeline to a "constant" row-frequency sink column. Needs to be
$ # of `constant` row_frequency itself or Arcana will raise an error
$ frametree apply bids///data/openneuro/ds00014 vbm_template \
  --input T1w in_file \
  --output vbm_template out_file \
  --row-frequency constant

Alternatively via the Python API:

Click to show
from myworkflows import vbm_template
from fileformats import common, medimage
from frametree.common import Clinical

frameset = FrameSet.load('bids///data/openneuro/ds00014')

# Add sink column with "constant" row frequency
frameset.add_sink(
    name='vbm_template',
    datatype=medimage.NiftiGz
    row_frequency='constant')

# NB: we don't need to add the T1w source as it is automatically detected
#     when using BIDS

# Connect pipeline to a "dataset" row-row_frequency sink column. Needs to be
# of `dataset` row_frequency itself or Arcana will raise an error
frameset.apply(
    name='vbm_template',
    workflow=vbm_template,
    inputs=[('in_file', 'T1w')],
    outputs=[('out_file', 'vbm_template')],
    row_frequency='constant')

Generating derivatives

After workflows and/or analysis classes have been connected to a dataset, derivatives can be generated using FrameSet.derive() or alternatively FrameSet.derive() for single columns. These methods check the data store to see whether the source data is present and executes the pipelines over all rows of the dataset with available source data. If pipeline inputs are sink columns to be derived by prerequisite pipelines, then the prerequisite pipelines will be prepended onto the execution stack.

To generate derivatives via the CLI

$ frametree derive 'myuni-xnat//myproject@training' freesurfer/recon-all

Alternatively via the API

Click to show
frameset = FrameSet.load('/data/openneuro/ds00014@test')

frameset.derive('fast/gm', cache_dir='/work/temp-dir')

# Print URI of generated dataset
print(frameset['fast/gm']['sub11'].uri)

By default Pydra uses the "concurrent-futures" ('cf') plugin, which splits workflows over multiple processes. You can specify which plugin, and thereby how the workflow is executed via the pydra_plugin option, and pass options to it with pydra_option.

$ frametree derive 'myuni-xnat//myproject@training' freesurfer/recon-all \
  --plugin slurm --pydra-option poll_delay 5 --pydra-option max_jobs 10

To list the derivatives that can be derived from a dataset after workflows have been applied you can use the menu command

$ frametree menu '/data/a-dataset'

Derivatives
-----------
recorded_datafile (application/zip)
recorded_metadata (application/json)
preprocessed (application/zip)
derived_image (image/png)
summary_metric (field/float)

Parameters
----------
contrast (field/float): 0.6 (default=0.5)
kernel_fwhms (field/float+array): [0.2, 0.2. 0.6] (default=[0.5, 0.3, 0.1])

Provenance

Provenance metadata is saved alongside derivatives in the data store. The metadata includes:

  • MD5 Checksums of all pipeline inputs and outputs

  • Full workflow graph with connections between, and parameterisations of, Pydra tasks

  • Container image tags for tasks that ran inside containers

  • Python dependencies and versions used.

How these provenance metadata are stored will depend on the type data store, but often it will be stored in a JSON file. For example, a provenance JSON file would look like

{
  "store": {
    "class": "<frametree.xnat.api:Xnat>",
    "server": "https://central.xnat.org"
  },
  "dataset": {
    "id": "MYPROJECT",
    "name": "passed-dwi-qc",
    "exclude": ['015', '101']
    "id_composition": {
      "subject": "(?P<group>TEST|CONT)(?P<member>\d+3)"
    }
  },
  "pipelines": [
    {
      "name": "anatomically_constrained_tractography",
      "inputs": {
        // MD5 Checksums for all files in the file group. "." refers to the
        // "primary file" in the file group.
        "T1w_reg_dwi": {
          "datatype": "<fileformats.medimage.data:NiftiGzX>",
          "checksums": {
            ".": "4838470888DBBEADEAD91089DD4DFC55",
            "json": "7500099D8BE29EF9057D6DE5D515DFFE"
          }
        },
        "T2w_reg_dwi": {
          "datatype": "<fileformats.medimage.data:NiftiGzX>",
          "checksums": {
            ".": "4838470888DBBEADEAD91089DD4DFC55",
            "json": "5625E881E32AE6415E7E9AF9AEC59FD6"
          }
        },
        "dwi_fod": {
          "datatype": "<fileformats.medimage.data:MrtrixImage>",
          "checksums": {
            ".": "92EF19B942DD019BF8D32A2CE2A3652F"
          }
        }
      },
      "outputs": {
        "wm_tracks": {
          "task": "tckgen",
          "field": "out_file",
          "datatype": "<fileformats.medimage.data:MrtrixTrack>",
          "checksums": {
            ".": "D30073044A7B1239EFF753C85BC1C5B3"
          }
        }
      }
      "workflow": {
        "name": "workflow",
        "class": "<pydra.engine.core:Workflow>",
        "tasks": {
          "5ttgen": {
            "class": "<pydra.tasks.mrtrix3.preprocess:FiveTissueTypes>",
            "package": "pydra-mrtrix",
            "version": "0.1.1",
            "inputs": {
              "in_file": {
                "field": "T1w_reg_dwi"
              }
              "t2": {
                "field": "T1w_reg_dwi"
              }
              "sgm_amyg_hipp": true
            },
            "container": {
              "type": "docker",
              "image": "mrtrix3/mrtrix3:3.0.3"
            }
          },
          "tckgen": {
            "class": "<pydra.tasks.mrtrix3.tractography:TrackGen>",
            "package": "pydra-mrtrix",
            "version": "0.1.1",
            "inputs": {
              "in_file": {
                "field": "dwi_fod"
              },
              "act": {
                "task": "5ttgen",
                "field": "out_file"
              },
              "select": 100000000,
            },
            "container": {
              "type": "docker",
              "image": "mrtrix3/mrtrix3:3.0.3"
            }
          },
        },
      },
      "execution": {
        "machine": "hpc.myuni.edu",
        "processor": "intel9999",
        "python-packages": {
          "pydra-mrtrix3": "0.1.0",
          "fileformats-medimage": "0.8.1",
          "frametree-xnat": "0.5.0"
        }
      },
    },
  ],
}

Before derivatives are generated, provenance metadata of prerequisite derivatives (i.e. inputs of the pipeline and prerequisite pipelines, etc...) are checked to see if there have been any alterations to the configuration of the pipelines that generated them. If so, any affected rows will not be processed, and a warning will be generated by default. To override this behaviour and reprocesse the derivatives, set the reprocess flag when calling Dataset.derive()

$ frametree derive 'myuni-xnat//myproject@training' freesurfer/recon-all  --reprocess

via the API:

Click to show
dataset.derive('fast/gm', reprocess=True)

To ignore differences between pipeline configurations you can use the Dataset.ignore() method

$ frametree ignore-diff 'myuni-xnat//myproject@training' freesurfer --param freesurfer_task num_iterations 3

via the API:

Click to show
dataset.ignore_diff('freesurfer_pipeline', ('freesurfer_task', 'num_iterations', 3))